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Fourier transform methods introduced by Harris are applied to the evaluation of Frenkel exciton 
lattice sums. The slowly-convergent direct lattice sum is converted into a rapidly-convergent reciprocal 
lattice sum which includes all orders in the multipole expansion. A simple example is discussed, and 
the calculated exciton energy as a function of wave number is compared with the results of the Ewald 
method. 
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I. Introduction 

In Frenkel exciton theory [1-12], one is interested in evaluating lattice sums 
of the form: 

e 2 

Hi-+J;k-+,(q) = Z ei~'x S d3x  [. a , . , d xp,~j(x )~_~,[ p~,(~-x) 
X ~ O  

(1) 

In Eq. (1), q is the exciton wave number, and the set of vectors {X} form the direct 
lattice of a crystal. 

p~_~j and P k ~  are "transition charge densities" defined by the relationships : 

_ _  t * r p*~(x ' )  = r )qgj (x  ) 

pk-~,(x) - ~o~(x)~o,(x) (2) 

where qh, q~j, qh are molecular orbitals. The usual method for evaluating Frenkel 
exciton lattice sums of the form (1) is to expand 1~Ix-x' I in a Taylor series about 
the points x = X and x' = X' : 

1 { c ~ , , c ~  } 1  
Ix-x'l- l+(x-X~,Ux+<X - x ) . ~ + . . .  Ix-x'l (3) 
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Substituting (3) into (1) and letting X'=0,  one obtains as the leading term, the 
dipole-dipole interaction: 

Hi ' j ;k~ l (q)  =e2 Z eiq'x fD*-~J'Dk-~l 

where 

3(Di-~j" X)(Dk~IX) '[  
(4) 

Di-,j  = - ~ d 3 x p i , j ( x )  x (5) 

Dipolar lattice sums of the type shown in Eq. (4) have been studied by Cohen and 
Keffer [13] using mathematical methods developed by Ewald, Born and Brad- 
burn [14-16]. In this paper, we shall instead evaluate the lattice sum shown in 
Eq. (t) using the full Coulomb interaction [17-18] rather than the dipole-dipole 
approximation. To do this, we shall make use of Fourier transform methods 
similar to those introduced by Harris [19-26]. 

2. Fourier Transform Evaluation of Hi_~j;k_~l(q) 
If we introduce the Fourier transform representation of 1~Ix-x ' l :  

1 1 f d3k  eii,.v,_x, ) 
] x - x ' [ - ~ - ~ 2  J k 2 (6) 

then we can rewrite (1) in the form: 

e2 d3k ik'X *T T 
Hi~j;k' l(q) =2~2 2 eiq'x ~ ~ -  e pi_~j(.k)pk_~l(k) (7) 

xg :o  

where 
T k eik.x~ rx~, Pi-~j( )-- (, d3x Pi-~j~ ) (8) 

is the Fourier transform of the transition charge density Pi--,j. General methods 
for evaluating Fourier transforms of this type have been discussed by Monkhorst 
and Harris [32], by Graovac, Monkhorst and Zivkovic [33], and by Harris [26]. 
We now make use of the relationship [26]" 

e i(k+~)'x-(2n)3 ~ 6(k + q+ K) (9) 
/) 

x K 

In Eq. (9), v is the volume of a unit cell, while the set of vectors {K} forms a lattice 
reciprocal to the direct lattice {X}. Substituting (9) into (7), we obtain the result: 

Pl ~ j( K + q)Pk-~l(-- K- -  q) H,__, _, ~ " 4ne 2 ~ * T T 
" j;k A q ) = - -  t, IK+ql ~ AH (10) 

where A H  is the term corresponding to X= 0: 

e 2 6 3 
- ~ -  p , ~ j ( -  k ) p k . t ( k )  (11) A H = ~ n 2  k * T  T 

The reciprocal lattice sum (10) converges rapidly because p~T(.~j _ k) and pk~l(k)T 
fall off very rapidly with k, as illustrated in the example given below. 
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3. Periodicity 

Notice that the expression for Hi~s;k_+l(q) given in (10) has the periodicity of 
the reciprocal lattice, since 

Hi~j;k~l( q q- K') + A H  
*T t T - 4~ze2 ~, Pi ~j(K+ K + q)Pk--Z(-- K-- K ' -  q) 

v ~ I x + X ' + q l  2 

_ 47ze2 ri~j~--n * T .( iv(" 
+q)pT~l(--K"--q)=Hi~j .k~t(q)+AH (12) 

~, ,=~+~,  I x " + q l  ~ 

4. Behavior near q = 0 

We would like to investigate the behavior of Hi~i;k~(q) in the neighbourhood 
of the point q = 0. The leading term in the series is then the term corresponding to 
K=0.  For  very small values of q, the remainder of the series, (i.e. the sum of the 
terms for which K S  0), is approximately independent of q. Thus we can write: 

4he 2 . r  T 4 h e  2 Pi-~j(q)Pk~l(- q) p*fj( K)p~, (  -- K) 
Hi-+j;k~l(q) ~-- ~ A H  (13) 

~+o ~ Iql 2 v , ,+o  Ixl 2 

In the neighborhood of  q = 0, we have: 

lira pf~j(q) = lira ~ dax eiq'~pi~y(x ) 
q~O q~O 

(14) 
= iq. ~ d3xpi~s(x)x - iq. Di+ j 

Thus, in the neighborhood of q = 0, we have the approximate relation: 

*T T 
~.~ P i ~ j ( g ) P k - > l ( -  K )  Hi~j;k~l(q) = 47re2 (q. D*_~i)(q. Dk-~l) 4_ 4~ze 2 

~ o  ~ q~ ~ ~ + o  I~q ~ 

e2  ~ dak ,T T 
2rc2 J ~ - -  pi~j(k)pk_~,(-- k) (15) 

5. A Lattice of  Hydrogen Molecules  

In order to illustrate the use of Eq. (15), let us apply it to a simple idealized 
example: a lattice of hydrogen molecules arranged as shown in Fig. (1). The 
ground state molecular orbital and the first excited state orbital of a single hydro- 
gen molecule are given respectively by: 

1 
4 ~  ~ (e-lx-tll"~176 

1 
402 -- ~ ( e - I x - I I / a o _  e - Ix+ i l /ao )  

42~a~ 

(16) 
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H H 

Fig. 1. A cubic lattice of hydrogen molecules is chosen as an idealized example to illustrate Eq. (10) 

where ao is the Bohr radius and 2l is the H-H separation. Thus the transition 
density is given by: 

1 
p l - . 2  ~ (p*(p2 = - 2 - ~ a  ~ (e-2lx-il/a~ -2lx+tl/a~ (17) 

and the Fourier transform of the transition density is: 

T i(  4 sin (k./) 2 
Pa-~z(k)- {k2 +~2} 2 ~=aoo (18) 

while the transition dipole moment becomes: 

D1-.2 = ~ d3xpl .2(x)x=! (19) 

If we substitute (18) into (10) and perform the sum in reciprocal space for a 
cubic lattice, we obtain the exciton energy as a function of the wave number q in 
the band corresponding to the transition 1~2. The surfaces corresponding to 
constant energy in this band are shown in Fig. (2). The point q--0 is singular, as 
are other points displaced from q = 0 by reciprocal lattice vectors. Many contours 
of constant energy, corresponding to different energies, converge on the point 
q = 0. Thus the value of the lattice sum at q = 0 depends on the direction from which 
the point is approached. In order  to examine the region near the point q = 0, we 
can substitute (18) and (19) into (15). This yields 

47ze 2 ( q - / ) ( q . / )  4rce2~ 8 sin 2 ( K . / )  
H i  ~2,1~2(q)  ~ I- 2 q-~0 v q2 v K,o N z ( N z + f f 2 )  4 AH (20) 

The integral 

e2( 8 d3k sin 2 (k./) 
AH=2~T~zl kZ{k2 + (2}4 

can be rewritten in the form" 

e2~ 8 
A/-/= ~-~ {1(0) -~I(2t)- �89 2l)} 

where 

I(R)--4~ dkjo(,kR) 
o {k 2 + ~ }4  

(21) 

(22) 

(23) 
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\ / \ i 

a b 
Fig. 2. These figures show exciton energy as a function of wave number for the transition 1 ~ 2, 
(Eq. (16)). Curves of constant energy, calculated from Eq. (10) are shown in reciprocal space. The 
curves fulfil two requirements: Firstly, near the point q = 0 the exciton energy is given by Eq. (27), and 
secondly, the exciton energy as a function of wave number has the periodicity of the reciprocal lattice. 
In Fig. (Ea), the transition dipole moment points along one of the crystal lattice vectors, as shown in 
Fig. (1). In Fig. (Eb), the molecular axis and the transition dipole moment are rotated through an 

angle of 30 ~ in one of the crystal planes 

In  (23), J0 is a spherical Bessel function of  order  zero. Evaluat ing I(R) by contour  
integration, we obta in :  

I(R)- (4n)E 
3(207((R ) [48 - e -  ~R (48 + 33(R + 9((R) 2 + ((R) a }] (24) 

With  2l = 1.4% and ( = 2/ao, substitution o f  (25) into (22) yields 

e 2 
AH= 0.060739534 - -  (25) 

a 0  

The reciprocal lattice sum in (20) converges rapidly because o f  the high power  o f  
K in the denominator .  W h e n  this sum is evaluated numerically and combined  
with the value o f  the integral, we obtain the approximate  result: 

sin E (K./)  e E (  s . dak sin z (k-/)  47reEl 2 (26) 
4neE(EKZg'e0V X;" I/~E{]/~]2-~-(E} 4 ---~-~2 ~ ~ - { k ~  - =  3v 

Thus, in the ne ighborhood  of  q = 0, we find the approximate  relationship: 

H1--'2"l'2(q)~-4ge~(q'~(q'l)-- v ~ q2 ~ }  (27, 

6. Comparison with the Results of Cohen and Keffer 

Cohen and Keffer [13],  using the methods  o f  Ewald, Born and Bradburn  
[14-16] ,  obtain the following expression for the lattice sum of  the dipole-dlpole 
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1- 3j~(qR)/qR 

1 ~ ~  

0 i i i -  

5 10 15 qR 

Fig. 3. According to the Cohen-Keffer formula, Eq. (28), the contribution of the dipole-dipole inter- 
action vanishes at q=0 for finite crystals. This is because the factor 1-3jl(qR)/qR vanishes when 
qR = 0. Thus, for finite crystals, the point q = 0 becomes a saddle point rather than an essential singularity 

interaction (Eq. (4)) in the neighborhood of  the point q = 0: 

g~_~j;~+~(q)-~ ~ - D ~ . D k + ~  x 1 
~-*o v 3 qR 

(28) 
Here the lattice sum is evaluated for a finite spherical crystal of  radius R, and Ja 
is a spherical Bessel function of order 1. When R-->oo and q ~ 0  simultaneously, 
the value of  q = 0  obtained from Cohen and Keffer's formula is indeterminate.  
However, when R is held at a finite value and q ~ 0 ,  the value at q = 0  is unambigu- 
ously zero, since 

3jl(qR) 
1 ~ 0 (29) 

qR qR +O 
According to Cohen and Keffer 's formula, when R is finite, rapid oscillations in 
Hi+j;k+t(q) should occur in the neighborhood of  q = 0  because of  the factor' 
1 -3jl(qR)/qR illustrated in Fig. (3). When R is infinite and q is small but finite, 

1 3jl(qR) ~ 1 (30) 
qR qR -~ o0 

and (28) reduces to 

Hi~ ~;k+z(q) ~ T, ~(q'Di'j)(q'Dk+t)~ Di'jiDk~z t (31) 

q < <  1/ao 

which should be compared with Eqs. (19 and (27). Notice that the Fourier trans- 
form evaluation of the lattice sum differs from the Ewald method by including all 
of  the high multipoles as well as the dipole-dipole contribution. (For a discussion 
of the high multipoles, see Silbey, Jortner and Rice, Ref. [17]). However, in the 
particular example which we have been discussing, the dipole-dipole contribution 
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is very large in comparison to the contribution of higher multipoles, and therefore 
we get an approximate agreement between the two methods even though one 
includes the higher multipoles and the other does not. 

7. Discussion 

Fourier transform methods can be seen to be very useful in the evaluation of 
Frenkel exciton lattice sums. These methods can also be used to evaluate Madelung 
sums, as has been discussed by Dahl [27] and Harris [26]. A Madelung sum is a 
sum of the form shown in Eq. (1), evaluated at the point q= 0, with the transition 
densities replaced by the total charge density. In this context, the Cohen-Keffer 
formula (26) might be used to discuss the contribution of the dipole-dipole term 
at q=0. 

The formalism outlined above can also be adapted to the evaluation of lattice 
sums when relativistic effects and retardation are included [28-31]. In that case, 
one can introduce the Fourier transform representation of the Green's function 
of  the operator ~ 2  ..[_ ~2 : 

( V 2 + ~2)G(x,  x ' )  = - 4 n 6 ( x -  x ' )  

1 d3 k elt,.(x_x, ) (32) 
a(x,  x') = S -kYS_ 

instead of Eq. (6). I hope to discuss these problems in detail in another paper. 
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